Diffusion models


Diffusion models are a class of generative models that learn the probability distribution of data by iteratively applying a series of transformations to a simple base distribution. They have been used in various applications, including image generation, text generation, and density estimation.

ShortFT: Diffusion Model Alignment via Shortcut-based Fine-Tuning

Add code
Jul 30, 2025
Viaarxiv icon

TopoLiDM: Topology-Aware LiDAR Diffusion Models for Interpretable and Realistic LiDAR Point Cloud Generation

Add code
Jul 30, 2025
Viaarxiv icon

Generative Active Learning for Long-tail Trajectory Prediction via Controllable Diffusion Model

Add code
Jul 30, 2025
Viaarxiv icon

GVD: Guiding Video Diffusion Model for Scalable Video Distillation

Add code
Jul 30, 2025
Viaarxiv icon

Zero-Shot Image Anomaly Detection Using Generative Foundation Models

Add code
Jul 30, 2025
Viaarxiv icon

LoReUn: Data Itself Implicitly Provides Cues to Improve Machine Unlearning

Add code
Jul 30, 2025
Viaarxiv icon

Visual Language Models as Zero-Shot Deepfake Detectors

Add code
Jul 30, 2025
Viaarxiv icon

Next Tokens Denoising for Speech Synthesis

Add code
Jul 30, 2025
Viaarxiv icon

DepR: Depth Guided Single-view Scene Reconstruction with Instance-level Diffusion

Add code
Jul 30, 2025
Viaarxiv icon

G-Core: A Simple, Scalable and Balanced RLHF Trainer

Add code
Jul 30, 2025
Viaarxiv icon