What is Diffusion models? Diffusion models are a class of generative models that learn the probability distribution of data by iteratively applying a series of transformations to a simple base distribution. They have been used in various applications, including image generation, text generation, and density estimation.
Papers and Code
Jun 12, 2025
Abstract:Latent Diffusion Models have shown remarkable results in text-guided image synthesis in recent years. In the domain of natural (RGB) images, recent works have shown that such models can be adapted to various vision-language downstream tasks with little to no supervision involved. On the contrary, text-to-image Latent Diffusion Models remain relatively underexplored in the field of medical imaging, primarily due to limited data availability (e.g., due to privacy concerns). In this work, focusing on the chest X-ray modality, we first demonstrate that a standard text-conditioned Latent Diffusion Model has not learned to align clinically relevant information in free-text radiology reports with the corresponding areas of the given scan. Then, to alleviate this issue, we propose a fine-tuning framework to improve multi-modal alignment in a pre-trained model such that it can be efficiently repurposed for downstream tasks such as phrase grounding. Our method sets a new state-of-the-art on a standard benchmark dataset (MS-CXR), while also exhibiting robust performance on out-of-distribution data (VinDr-CXR). Our code will be made publicly available.
* 14 pages, 6 figures
Via

Jun 12, 2025
Abstract:This paper presents a novel method for analyzing the latent space geometry of generative models, including statistical physics models and diffusion models, by reconstructing the Fisher information metric. The method approximates the posterior distribution of latent variables given generated samples and uses this to learn the log-partition function, which defines the Fisher metric for exponential families. Theoretical convergence guarantees are provided, and the method is validated on the Ising and TASEP models, outperforming existing baselines in reconstructing thermodynamic quantities. Applied to diffusion models, the method reveals a fractal structure of phase transitions in the latent space, characterized by abrupt changes in the Fisher metric. We demonstrate that while geodesic interpolations are approximately linear within individual phases, this linearity breaks down at phase boundaries, where the diffusion model exhibits a divergent Lipschitz constant with respect to the latent space. These findings provide new insights into the complex structure of diffusion model latent spaces and their connection to phenomena like phase transitions. Our source code is available at https://github.com/alobashev/hessian-geometry-of-diffusion-models.
* ICML 2025
Via

Jun 12, 2025
Abstract:We study masked discrete diffusion models with classifier-free guidance (CFG). Assuming no score error nor discretization error, we derive an explicit solution to the guided reverse dynamics, so that how guidance influences the sampling behavior can be precisely characterized. When the full data distribution is a mixture over classes and the goal is to sample from a specific class, guidance amplifies class-specific regions while suppresses regions shared with other classes. This effect depends on the guidance strength $w$ and induces distinct covariance structures in the sampled distribution. Notably, we observe quantitatively different behaviors in $1$D and $2$D. We also show that for large $w$, the decay rate of the total variation ($\mathrm{TV}$) along the reverse dynamics is double-exponential in $w$ for both $1$D and $2$D. These findings highlight the role of guidance, not just in shaping the output distribution, but also in controlling the dynamics of the sampling trajectory. Our theoretical analysis is supported by experiments that illustrate the geometric effects of guidance and its impact on convergence.
Via

Jun 12, 2025
Abstract:We present a novel attack specifically designed against Tree-Ring, a watermarking technique for diffusion models known for its high imperceptibility and robustness against removal attacks. Unlike previous removal attacks, which rely on strong assumptions about attacker capabilities, our attack only requires access to the variational autoencoder that was used to train the target diffusion model, a component that is often publicly available. By leveraging this variational autoencoder, the attacker can approximate the model's intermediate latent space, enabling more effective surrogate-based attacks. Our evaluation shows that this approach leads to a dramatic reduction in the AUC of Tree-Ring detector's ROC and PR curves, decreasing from 0.993 to 0.153 and from 0.994 to 0.385, respectively, while maintaining high image quality. Notably, our attacks outperform existing methods that assume full access to the diffusion model. These findings highlight the risk of reusing public autoencoders to train diffusion models -- a threat not considered by current industry practices. Furthermore, the results suggest that the Tree-Ring detector's precision, a metric that has been overlooked by previous evaluations, falls short of the requirements for real-world deployment.
* 18 pages, to be published in the 34th USENIX Security Symposium
Via

Jun 12, 2025
Abstract:We present LatentCSI, a novel method for generating images of the physical environment from WiFi CSI measurements that leverages a pretrained latent diffusion model (LDM). Unlike prior approaches that rely on complex and computationally intensive techniques such as GANs, our method employs a lightweight neural network to map CSI amplitudes directly into the latent space of an LDM. We then apply the LDM's denoising diffusion model to the latent representation with text-based guidance before decoding using the LDM's pretrained decoder to obtain a high-resolution image. This design bypasses the challenges of pixel-space image generation and avoids the explicit image encoding stage typically required in conventional image-to-image pipelines, enabling efficient and high-quality image synthesis. We validate our approach on two datasets: a wide-band CSI dataset we collected with off-the-shelf WiFi devices and cameras; and a subset of the publicly available MM-Fi dataset. The results demonstrate that LatentCSI outperforms baselines of comparable complexity trained directly on ground-truth images in both computational efficiency and perceptual quality, while additionally providing practical advantages through its unique capacity for text-guided controllability.
* 6 pages, 4 figures
Via

Jun 12, 2025
Abstract:We introduce Equivariant Neural Diffusion (END), a novel diffusion model for molecule generation in 3D that is equivariant to Euclidean transformations. Compared to current state-of-the-art equivariant diffusion models, the key innovation in END lies in its learnable forward process for enhanced generative modelling. Rather than pre-specified, the forward process is parameterized through a time- and data-dependent transformation that is equivariant to rigid transformations. Through a series of experiments on standard molecule generation benchmarks, we demonstrate the competitive performance of END compared to several strong baselines for both unconditional and conditional generation.
* 38th Conference on Neural Information Processing Systems (NeurIPS
2024)
Via

Jun 12, 2025
Abstract:Uniform-state discrete diffusion models hold the promise of fast text generation due to their inherent ability to self-correct. However, they are typically outperformed by autoregressive models and masked diffusion models. In this work, we narrow this performance gap by leveraging a key insight: Uniform-state diffusion processes naturally emerge from an underlying Gaussian diffusion. Our method, Duo, transfers powerful techniques from Gaussian diffusion to improve both training and sampling. First, we introduce a curriculum learning strategy guided by the Gaussian process, doubling training speed by reducing variance. Models trained with curriculum learning surpass autoregressive models in zero-shot perplexity on 3 of 7 benchmarks. Second, we present Discrete Consistency Distillation, which adapts consistency distillation from the continuous to the discrete setting. This algorithm unlocks few-step generation in diffusion language models by accelerating sampling by two orders of magnitude. We provide the code and model checkpoints on the project page: http://s-sahoo.github.io/duo
* ICML 2025. We provide the code at: https://github.com/s-sahoo/duo
Via

Jun 12, 2025
Abstract:It is well known that semantic and structural features of the generated images emerge at different times during the reverse dynamics of diffusion, a phenomenon that has been connected to physical phase transitions in magnets and other materials. In this paper, we introduce a general information-theoretic approach to measure when these class-semantic "decisions" are made during the generative process. By using an online formula for the optimal Bayesian classifier, we estimate the conditional entropy of the class label given the noisy state. We then determine the time intervals corresponding to the highest information transfer between noisy states and class labels using the time derivative of the conditional entropy. We demonstrate our method on one-dimensional Gaussian mixture models and on DDPM models trained on the CIFAR10 dataset. As expected, we find that the semantic information transfer is highest in the intermediate stages of diffusion while vanishing during the final stages. However, we found sizable differences between the entropy rate profiles of different classes, suggesting that different "semantic decisions" are located at different intermediate times.
* 4 pages, 3 figures, an appendix with derivations and implementation
details, accepted at ICLR DeLTa 2025
Via

Jun 12, 2025
Abstract:Recent advances in diffusion models have significantly improved image generation and editing, but extending these capabilities to 3D assets remains challenging, especially for fine-grained edits that require multi-view consistency. Existing methods typically restrict editing to predetermined viewing angles, severely limiting their flexibility and practical applications. We introduce Edit360, a tuning-free framework that extends 2D modifications to multi-view consistent 3D editing. Built upon video diffusion models, Edit360 enables user-specific editing from arbitrary viewpoints while ensuring structural coherence across all views. The framework selects anchor views for 2D modifications and propagates edits across the entire 360-degree range. To achieve this, Edit360 introduces a novel Anchor-View Editing Propagation mechanism, which effectively aligns and merges multi-view information within the latent and attention spaces of diffusion models. The resulting edited multi-view sequences facilitate the reconstruction of high-quality 3D assets, enabling customizable 3D content creation.
* 11 pages, 9 figures
Via

Jun 12, 2025
Abstract:Do contemporary diffusion models preserve the class geometry of hyperspherical data? Standard diffusion models rely on isotropic Gaussian noise in the forward process, inherently favoring Euclidean spaces. However, many real-world problems involve non-Euclidean distributions, such as hyperspherical manifolds, where class-specific patterns are governed by angular geometry within hypercones. When modeled in Euclidean space, these angular subtleties are lost, leading to suboptimal generative performance. To address this limitation, we introduce HyperSphereDiff to align hyperspherical structures with directional noise, preserving class geometry and effectively capturing angular uncertainty. We demonstrate both theoretically and empirically that this approach aligns the generative process with the intrinsic geometry of hyperspherical data, resulting in more accurate and geometry-aware generative models. We evaluate our framework on four object datasets and two face datasets, showing that incorporating angular uncertainty better preserves the underlying hyperspherical manifold. Resources are available at: {https://github.com/IAB-IITJ/Harmonizing-Geometry-and-Uncertainty-Diffusion-with-Hyperspheres/}
Via
